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Abstract 

Quantum kinematics on a configuration manifold (Angermann et al., 1983; Tolar 1991) extends 
the notion of schrdinger systems (Segal, 1960; Stov~ek, 1981). Geometric quantization sets as 
its goal the construction of quantum objects using the geometry of the corresponding classical 
objects as a point of departure (Kirillov, 1992; Koodhouse, 1992). In this paper, we prove that 
differential quantum kinematics on a smooth manifold Q derive from the geometric quantization 
on the cotangent bundle T* Q. 
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1. Introduction 

Let Q be a differential manifold. The family FQ of non-relativistic quantum mechanical 

systems, localized and moving on Q, is characterized by a set ](~a of"kinemat ica l  objects" 

called Borel kinematics on Q. ](~a is quantized [1 ] by Angermann and Doebner and Tolar 

[2] via a mapping of  ]Ca into the set of  self-adjoint operators in some Hilbert space H,  such 

that those properties of  K~Q survive, which are both characteristic for FQ and can be used 

for a rigorous mathematical formulation. 

On the other hand, the cotangent bundle M = T* Q of  Q with the canonical 2-form 

o9 = dpa A dq a 

is a symplectic manifold, where the q ' s  are coordinates on Q and the p ' s  are the correspond- 

ing components of  covectors. The Souriau-Kostant  formula [5] gives prequantizations of  
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(M, w). By the real polarization which has the cotangent spaces as its leaves, a number of  

quantizations of  (M, w) can be obtained. In this paper, we prove that these quantizations 

are almost the same as the differential quantum kinematics given by [1 ]. 

2. Quantum kinematics on smooth manifolds 

For a differential manifold Q, K~Q : (E(Q),  Xc(Q)) is called Borel kinematics on Q, 

where £ (Q) is the or-algebra of  Borel sets of  Q--posi t ion observables, and X,. (Q) = { X Ix 

is a smooth complete vector field on Q} - -momen tum observables. 

Definition 2.1. A triple (H, E, P) is called a quantum Borel kinematics on Q iff 

(1) H is a separable Hilbert space; 

(2) E is an elementary spectral measure on F_.(Q) in H; 

(3) P : Xc(Q) ~ SA(H)  (the set of self-adjoint operators on H) is a map with the 

following properties: 

(a) P(X) is the infinitesimal generator of a unitary one-parameter group of  "shifts" 

along X for all X E X,.(Q), 

(b) P is local, 

(c) P is a partial Lie homomorphism; and the domain v ~ (see [ 1 ]) is dense in H. 

Here all the notations are the same as Definition 2 in I 11 except that (c) means 

P(X + aY) : P(X) + aP(Y) 

for X, Y ~ Xc(Q), a E ~ whenever X + aY c Xc(Q), and 

[P(X), P(Y)] = - i h P ( [ X ,  Y]) 

for all X, Y ~ Xc(Q) whenever [X, Y] E Xc(Q), where 2rrh is Plank's constant. 

Remark .  Here quantum kinematics are defined as in [ 1 ]. In fact, they are so-called quantum 

Borel l-kinematics (QBK I) in [21 where E is only a projection-valued measure in the 

definition of quantum kinematics. 

Two quantum Borel kinematics (Hi, Ej,  Pj), j = 1,2, on Q are called equivalent iff 

there exists a unitary map cp : HI ~ 112 such that 

q~El(B)q~ -1 = E2(B), q~Pl(X)q~ - l  = P2(X) 

for all B ~ £(Q) ,  X ~ X,.(Q). 
There is a natural correspondence between the set C(Q, C) of  complex-valued functions 

on Q and the set F(Lo) of sections of  the fibration Lo = (Q × C, prl,  Q) with prl being 

the natural projection of  M x C onto M: 

s<--~ f~, s ~ F ( L o ) ,  f , . E C ( Q , C )  s u c h t h a t s ( q ) = ( q ,  f s ( q ) ) , q E  Q. 

It is easy to show that fs is Borel-measurable iff s is Borel-measurable (with respect to the 

a-algebra £(Q)  ® E(C) on Q × C). 
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Fix a smooth Borel measure y on Q. Define 

( , ) o : p r l l ( q ) x p r ~ l ( q ) - - - ~ C ,  ( ( q , z ) , ( q , z ' ) ) o = z z ' ,  q 6 Q ,  

Following [1], up to unitary equivalence, any quantum Borel kinematics (H, E, P) on Q 
has the form: 

(1) H = L2(Lo, F), 
(2) E ( B ) ~  = ~BaP VB ~ E(Q),  ~ ~ H, where ~B denotes the indicator function of B. 

A quantum Borel kinematics (H, E, P) on Q is called differential if there exists a dif- 
ferential structure D = (r, a) on the point set Q x C, where r is a Hausdorff topology 

for Q x C and a is a maximal C~-altas of charts compatible with r,  such that Lo = 
((Q x C, D), prl,  Q, C) is a complex line bundle over Q with hermitian metric ( , )0, 
E(Q x C, r) = E(Q) ® E(C) and the domain v ~ equals to the complex vector space 

F ~ ( L o )  of compactly supported differential sections of LD which is dense in L2(Lo, 2/) 
[1, Theorem 4]. 

Theorem 2.1. Let Q be a differential manifold and F be a fixed smooth Borel measure on 
Q: 
(1) For every pair (L, r) consisting of a complex line bundle over Q with the hermitian 

metric ( , ) and hermitian linear connection V with vanishing curvature, and a real 
number r, 

H L = L 2 ( L , (  , ) ,F) ,  E ( B ) ~ = ~ B ~  f o r B ~ / 2 ( O ) ,  

P(X)IF~XD(L) = - i h  ~Tx - ( l i  + r )  hdiv× X VX E P(c(Q) 

define a differential quantum Borel kinematics ( H, E, P) on Q. 
(2) Every differential quantum Borel kinematics on Q is equivalent to one given by (1). 
(3) Two differential quantum Borel kinematics ( Hj, E j,  Pj) in ( 1 ) characterized by (L j,  rj ), 

j = 1, 2, are equivalent if and only ifrl = r2 and if there is an isometric isomorphism 

of Ll onto L2, which transforms the connections into each other. Therefore, the set 
of equivalence classes of differential quantum Borel kinematics on Q can be mapped 
bijectively onto rrl(Q)* x R where Jrl(Q) denotes the fundamental group of  Q and 
Zrl (Q)* its group of characters. 

Remark.  

(1) The property of flatness of V in Theorem 2.1 derives from 

[P(X), P(Y)] ---- - ihP( [X,  Y]) 

for all X, Y 6 Xc(Q) whenever [X, Y] c ?(c(Q). 
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(2) There are similar results for quantum Borel r-kinematics (r > 1) of  type 0 [2]. 

For the proof, see Theorems 6 and 7 in [ 1 ]. 

We note that a differential quantum Borel kinematics (H, E, P) given by (L, r) in The- 
orem 2.1 automatically induces maps: 

Q : Coo(Q, ~) --~ End(H)  and P : X ( Q )  ~ End(H)  

such that 

Q ( f ) ~  = f ~ ,  P(X)~p = ( - i h  Vx - (½i  + r)h divy X ) ~  

for f c Coo(Q, R), X E ,¥(Q),  ~0 E voo ---- / '0~(L), where the set End(H)  of operators 

of  the Hilbert space H is a Lie algebra with the bracket [ , [h: 

[A, B]h ---- i h - l ( A B  - BA),  A, B c End(H) ,  

and ,¥(Q) is the set of  vector fields on Q. Meanwhile, let 

gk --- Coo(Q, •) ~ X (Q) .  

Define [ , ] : gk × gk --+ gk as follows: 

[ X +  f , Y + g ] = [ X , Y ] + ( X g - Y f )  VX, Y c X ( Q ) ,  f ,  g E  C°°(Q,R) .  

then gk is a Lie algebra. According to [ 1], the differential quantum Borel kinematics given 
k by (L, r) induces a Lie homomorphism from gk into End(H) ,  denote it by Zr~L,i/2+r ). In 

fact, replacing l i  + r by any c E C in the formulas of  P, we also get a Lie homomorphism. 

Denote it by ~r{L,c). 

Definition 2.2. A h-representation of a Lie algebra g i s  a pair (H, rr), where H is a Hilbert 

space and 

zr : g ~ End(H)  

is a Lie homomorphism. Two h-representations (Hj, rcj ), j ---- 1, 2, o f g  are called equivalent 

if there exists a unitary isomorphism 4' : Hi ---> H2 such that zrl (X)4~ = q~Jrz(X) for all 
X c g .  

Theorem 2.2. For any c ~ C and any complex line bundle L with the hermitian metric 

, ) and the hermitian linear connection ~7 with vanishing curvature, 

7r k (L,c) " gk --> End(HL) 

ts a h-representations of  g k, where 

7r~L.c)( f + X ) l p  = ( - i h  V x  - c h d i v y X  + f)~p 

for f E C ~ ( Q ,  ff~), X ~ X (Q) ,  ~ ¢ v ~ = I'~XZ(L). In particular, all the differential 

quantum Borel Kinematics Zr~L,i/Z+r ) on Q are h-representations of  g k. 
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3. Geometric quantizations of T* Q 

Let M = T*Q be the cotangent bundle of  a smooth manifold Q. Then 09 = d0 is a 

symplectic form on T* Q, where 0 = Pa dq a is the canonical one-form, the q ' s  are local 

coordinates on Q, and the p ' s  are the corresponding components of  covectors. A Poisson 

bracket is defined in C ~ ( M ,  ~): 

( O~p a OG 
IF, G} = 

Oqa 

OF OG ) 
Oq a Opa ' F, G ~ C ~ ( M ,  ~). 

Following Dirac, a prequantization is a linear mapping F ~ F of the Poisson algebra 

C ~ ( M ,  •) into SA(H)  for some Hilbert space H,  having the properties: 

(1)  i = l; 

(2) [Fl,  F2] ~= [/~'1, F'2lh- 

Theorem 3.1 (Kostant [5]). For every complex line bundle B over M with a hermitian 
metric and a hermitian linear connection with the curvature h- l  co, H = closure of 

F ~  ( B ) and F = - i h  ~7 XF + F define a prequantization, here X F is the Hamilton vector 
field of F. Two prequantizations given by Bj, j = 1,2, are equivalent (i.e. equivalent 
as h-representations of the Lie algebra C ~ ( M ,  ~)) if and only if there is an isometric 
isomorphism of B1 onto B2, which transforms the connections into each other. So 
the set of equivalence classes of presentations of M = T*Q can be parametrized by 

tel (M)* -~ Jrl (Q)*. 

Now we choose the vertical polarization P of M = T* Q: Pm = Tm (T;r(m) Q), m ~ M, 
where pr : M ~ Q is the natural projective map of  bundle T*Q on Q. Then Q -- M / P .  
For simplicity, assume that Q is oriented. 

Denote by AQ ~ Q the line bundle A~(Q),  where n = dim Q, ~2~(M) the space of 

complex p-forms on M, and 

Vp(M) = {X c X(M)IXm E Pro, m ~ M}. 

Then for/3 ~ I2~ (M),/3 is the pull-back of  a section of  A Q iff X ~-/3 = 0 and X I- d/3 = 0 

for all X E Vp(M), and the Lie derivative Lzfl  is also the pull-back of a section of  AQ if 
Z c ?((M) whose flow preserves P, where ~- denotes the contraction of  X with/3. 

Let Kp C A t ( M )  be the canonical line bundle whose fibre at m ~ M is the one- 
dimensional subspace of  AnT~.cM of forms ot such that X b c~ = 0 for every X ~ Pro. 
It is obvious that Kp = pr*Aa.  Since Q is oriented, the transition functions of  AQ and 

Kp can all be made real and positive. So we can take their square roots v / ~  and ~ by 
taking the square roots of  the transition functions. 

The covariant derivative Vx on Kp is defined for X ~ Vp(M) by Vx/3 = X t-- d/3. The 
sections of  Kp which are covariantly constant along P are the pull-backs of  n-forms on 
Q. If Z is a vector field on M whose flow preserves P, then the Lie derivative Lz  maps 
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sections of Kp  to sections of  Kp.  The Vx  and L z  can pass to the bundle 6e = ~ where 

they are determined by 

2 ( V x r ) r  = V x r  2, 2 ( L z r ) r  = L z r  2. 

Here r is a section of  3p. 

Let B be a prequantum bundle, that is, a complex line bundle over M with a hermitian 

metric ( , ) and a hermitian linear connection V with the curvature h -J co. Set Be = B®Sp.  

Define 

VB = {s = sr E F ~ ( B p ) I  Vx g = ( V x s ) r  + s Vx  r = 0}. 

l f , i  = s r  and ~' = s 'r '  c Vs, then (~, g') = (s, s ' ) r r '  E F~C(Ke) and for X ~ Vt,(M), 

V x ( L  ,~') = ( V x L  S)  + (L Vx~' )  = 0. 

Hence we can identify (~, g') with an n-form on Q and define an inner product on VB by 

= ,~'). 

Q 

The completion of {g 6 VBI(g, ~) < ec} is a Hilbert space HB. 

Let {qa} be local coordinates on Q, and {p,, } the corresponding components of covectors, 

then a classical observable that generates a flow preserving P is locally of  the form 

F(q, p) = va(q)pa + u(q), 

where v's and u are smooth real-valued functions of q 's .  It is easy to see that 

gp = {F ~ C ~ ( M ,  R)l whose flow preserving P} 

is a Lie subalgebra of  the Poisson algebra C ~ ( M ,  ~). For F E gp ,  the possible choice of 

the corresponding quantum observable is the operator ,5 that acts on V8 by 

Fs  : ~ '(s)r  + cSLXF r, 

where ~ = s r  ~ Vs, c 6 C. It is easy to check that b" is well-defined iff c = - i h .  So 

/c,~ = /C(s)r -- ihsLxr  r, 

where g = s r  E VB. 

T h e o r e m  3.2. [2] The Hilbert space HB and the mapping F -+ F, F c gp, define a 

geometric quantization of  M which is a h-representation of  the Lie algebra gp. 

4. Quantum kinematics and geometric quantization 

Now suppose Q, A Q, B as above. Since Q is oriented, ~ is trivial. Fix a non-vanishing 

section r '  of  V / ~ .  Then y = C 2 is a section of  AQ which can be considered as a Borel 

measure on Q. Set r = pr*C c F(~p). We have V x r  = 0 for every X ~ Vp(M), and 
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V B = {s = s r l s  E F e e ( B ) ,  V X S  = 0, X E V p ( M ) } .  

For F ~ gp and c ~ C, define 

F ( s r )  = F ( s ) r  + c L x F r ,  s r  E VB. 

Theorem 4.1. 7~ g " F -+ F, F E gp, defines a h-representation of gp. (B,c) 

For the quantum objects gK in quantum kinematics and gp in geometric quantizations, 

we have the following conclusion. 

Theorem 4.2. As Lie algebras, gK is isomorphic to gp. 

Proof  For f E C ~ ( Q ,  •), X E X ( Q ) ,  define 

¢p(f + X)(q ,  or) = f ( q )  + ot(Xq),  

where q E Q, ot ~ TqQ.  Then 4~(f + X) ~ ge .  It is easy to check that 4~ : gK ~ ge  is a 

Lie isomorphism. [] 

Let B --+ M be a complex line bundle with a hermitian metric ( , ) and a hermitian 

linear connection V with the curvature h - l w  = h -1 dO, where 0 = Pa dq a is the canonical 

one-form on M = T*Q.  Find a collection {(Uj, rj)} of  local trivializations of B such 

that {Uj} is a contractible open cover of M, rj : Uj × C -~ r r - I ( u j )  and ~TxSj = 0 

for any X ~ V e ( M ) ,  where sj = r j ( . ,  1) is the unit section of (Uj, r j ) .  Then there exist 

cjk E C ~ ( U j  fl Uk, C), and Oj ~ J-2(Uj) such that 

Sk = CjkSj, VSj = - i h - l O j s j ,  Ok -- Oj = i h - l  ( dcTk/Cjk). 

Since the curvature of  V is h - l  w = h -1 dO, Oj = 0 + dgj for some gj c C ~ ( U j ) .  

Now it is easy to see that {Vj = pr  Uj} and {djk = pr  cjk} determine a complex line 

bundle LB ~ Q which is the restriction of  B on Q and has the hermitian metric ( , )1Q. 

Moreover, {otj = Oj [Vj = dgjlVj} determines a hermitian linear connection ~7 of  Lt~ with 

the vanishing curvature. We can check that 

X g j = O ,  X c j k = O  for a n y X c  Vp(M) .  

So Cjk = pr* djk and dgj = pr* otj. 
It is easy to prove the following result. 

Theorem 4.3. ~ : B -+ L B is a bijection between complex line bundles over M with a 
hermitian metric and a hermitian linear connection with the curvature h -  1 o) = h -  1 dO and 

complex line bundles over Q with a hermitian metric and a hermitian linear connection 
with the vanishing curvature. It induces a unitary isomorphism 

p : HB ~ L2(LB,  v), p ( s r )  = slQ.  
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Let 4~ : gK --+ gP be the isomorphism in Theorem 4.2. Choose F c gp, that is, in the 

cannonical coordinate system on M, 

F(p,  q) = va(q)pa + u(q) 

such that Y 6 A'(Q) when we define Yq = va(q)(O/Oq a) for q c Q, and u c C°°(Q), 

F = ~p(Y) + ~p(u). The Hamilton vector field of F is 

xr:v-k po+ 
Let B -+ M be a complex line bundle with a hermitian metric ( , ) and a hermitian 

linear connection V with the curvature h - l w  = h - I  dO, (Uo, to) be a local trivialization 

of B such that Vxso = 0 where so is the unit section of (Uo, to) and X c Vp(M). We 

have Vso = - ih -J (O + dg)so for some g c Coo(Uo) and Xg = 0 for any X ~ Ve(M).  

Now choose ~ = s r  E VB C HB, then slUo = f so  for some f ~ Coo(Uo), X f  = OVX 

Vp(M), and forc  6 C, 

= + ½chsLx .  

= ( - i h  VXF S + Fs)r  + ½chSLxF r 

= [ - - i h ( X r f  -- i h - lO(Xr )  - ih - lXgg)so  + Ffso]r  + ½chSLxF r 

: [ - i h ( Y f  - ih - I  dg(Y))so + ufso]r + ½chsLxrr  

= ( - i h  VY s + us)r + ½chsLrr.  

Since L v r '  = ½(divy Y)r ' ,  we get 

p(rr~B,c)(O(Y + u))g) = - i h  VV slQ + usJQ + ch(div× Y)slQ 

- -  :r k (Y + u)pg. 
- -  (LB,c) 

We have proved the following. 

Theorem 4.4. As h-representations of  g k ( or gp), 

7r g _~ 7r k 
(B,c) (LB,c)" 

k In particular, quantum kinematics 7f(LB,r+i/2) is isomorphic to geometric quantization 

7r~B,,.+i/2 ) for  r C ~. 

Remark .  Quantum Borel r-kinematics of type 0 can be obtained from corresponding geo- 

metric quantizations where the prequantum bundles are hermitian vector bundles with fibres 

diffeomorphic to C r. 
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