Quantum kinematics and geometric quantization *

Zhao Qiang ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Mathematics, Peking University, Beijing 100871, China
${ }^{\mathrm{b}}$ Department of Mathematics, Northwest Normal University, Lanzhon, China

Received 26 September 1995

Abstract

Quantum kinematics on a configuration manifold (Angermann et al., 1983; Tolar 1991) extends the notion of schrdinger systems (Segal, 1960; S̃tovẽek, 1981). Geometric quantization sets as its goal the construction of quantum objects using the geometry of the corresponding classical objects as a point of departure (Kirillov, 1992; Koodhouse, 1992). In this paper, we prove that differential quantum kinematics on a smooth manifold Q derive from the geometric quantization on the cotangent bundle $T^{*} Q$.

Subj. Class.: Quantum mechanics
1991 MSC: 58F06
Keywords: Quantum kinematics; Geometric quantization; Polarization

1. Introduction

Let Q be a differential manifold. The family Γ_{Q} of non-relativistic quantum mechanical systems, localized and moving on Q, is characterized by a set \mathcal{K}_{Q} of "kinematical objects" called Borel kinematics on $Q . \mathcal{K}_{Q}$ is quantized [1] by Angermann and Doebner and Tolar [2] via a mapping of \mathcal{K}_{Q} into the set of self-adjoint operators in some Hilbert space H, such that those properties of \mathcal{K}_{Q} survive, which are both characteristic for Γ_{Q} and can be used for a rigorous mathematical formulation.

On the other hand, the cotangent bundle $M=T^{*} Q$ of Q with the canonical 2-form

$$
\omega=\mathrm{d} p_{a} \wedge \mathrm{~d} q^{a}
$$

is a symplectic manifold, where the q 's are coordinates on Q and the p 's are the corresponding components of covectors. The Souriau-Kostant formula [5] gives prequantizations of

[^0](M, ω). By the real polarization which has the cotangent spaces as its leaves, a number of quantizations of (M, ω) can be obtained. In this paper, we prove that these quantizations are almost the same as the differential quantum kinematics given by [1].

2. Quantum kinematics on smooth manifolds

For a differential manifold $Q, \mathcal{K}_{Q}=\left(\mathcal{L}(Q), \mathcal{X}_{c}(Q)\right)$ is called Borel kinematics on Q, where $\mathcal{L}(Q)$ is the σ-algebra of Borel sets of Q-position observables, and $\mathcal{X}_{c}(Q)=\{X \mid X$ is a smooth complete vector field on $Q\}$-momentum observables.

Definition 2.1. A triple ($H, \mathbf{E}, \mathbf{P}$) is called a quantum Borel kinematics on Q iff
(1) H is a separable Hilbert space;
(2) \mathbf{E} is an elementary spectral measure on $\mathcal{L}(Q)$ in H;
(3) $\mathbf{P}: \mathcal{X}_{c}(Q) \rightarrow S A(H)$ (the set of self-adjoint operators on H) is a map with the following properties:
(a) $\mathbf{P}(X)$ is the infinitesimal generator of a unitary one-parameter group of "shifts" along X for all $X \in \mathcal{X}_{c}(Q)$,
(b) \mathbf{P} is local,
(c) \mathbf{P} is a partial Lie homomorphism; and the domain v^{∞} (see [1]) is dense in H.

Here all the notations are the same as Definition 2 in [1] except that (c) means

$$
\mathbf{P}(X+a Y)=\mathbf{P}(X)+a \mathbf{P}(Y)
$$

for $X, Y \in \mathcal{X}_{c}(Q), a \in \mathbb{R}$ whenever $X+a Y \in \mathcal{X}_{c}(Q)$, and

$$
[\mathbf{P}(X), \mathbf{P}(Y)]=-\mathrm{i} h \mathbf{P}([X, Y])
$$

for all $X, Y \in \mathcal{X}_{c}(Q)$ whenever $[X, Y] \in \mathcal{X}_{c}(Q)$, where $2 \pi h$ is Plank's constant.
Remark. Here quantum kinematics are defined as in [1]. In fact, they are so-called quantum Borel 1-kinematics (QBK^{1}) in [2] where \mathbf{E} is only a projection-valued measure in the definition of quantum kinematics.

Two quantum Borel kinematics $\left(H_{j}, \mathbf{E}_{j}, \mathbf{P}_{j}\right), j=1,2$, on Q are called equivalent iff there exists a unitary map $\phi: H_{1} \rightarrow H_{2}$ such that

$$
\phi \mathbf{E}_{1}(B) \phi^{-1}=\mathbf{E}_{2}(B), \quad \phi \mathbf{P}_{1}(X) \phi^{-1}=\mathbf{P}_{2}(X)
$$

for all $B \in \mathcal{L}(Q), \quad X \in \mathcal{X}_{c}(Q)$.
There is a natural correspondence between the set $C(Q, \mathbb{C})$ of complex-valued functions on Q and the set $\Gamma\left(L_{0}\right)$ of sections of the fibration $L_{0}=\left(Q \times \mathbb{C}, p r_{1}, Q\right)$ with $p r_{1}$ being the natural projection of $M \times \mathbb{C}$ onto M :

$$
s \leftrightarrow f_{s} . \quad s \in \Gamma\left(L_{0}\right), \quad f_{s} \in C(Q, \mathbb{C}) \text { such that } s(q)=\left(q, f_{s}(q)\right), q \in Q
$$

It is easy to show that f_{s} is Borel-measurable iff s is Borel-measurable (with respect to the σ-algebra $\mathcal{L}(Q) \otimes \mathcal{L}(\mathbb{C})$ on $Q \times \mathbb{C})$.

Fix a smooth Borel measure γ on Q. Define

$$
\begin{aligned}
& (,\rangle_{0}: p r_{1}^{-1}(q) \times p r_{1}^{-1}(q) \rightarrow \mathbb{C}, \quad\left\langle(q, z),\left(q, z^{\prime}\right)\right\rangle_{0}=z z^{\prime}, \quad q \in Q, \\
& L^{2}\left(L_{0}, \gamma\right)=\left\{s \in \Gamma\left(L_{0}\right) \mid s \text { is measurable, } \int_{Q}\langle s, s\rangle_{0} \mathrm{~d} \gamma<+\infty\right\} .
\end{aligned}
$$

Following [1], up to unitary equivalence, any quantum Borel kinematics ($H, \mathbf{E}, \mathbf{P}$) on Q has the form:
(1) $H=L^{2}\left(L_{0}, \gamma\right)$,
(2) $\mathbf{E}(B) \psi=\xi_{B} \psi \forall B \in \mathcal{L}(Q), \psi \in H$, where ξ_{B} denotes the indicator function of B.

A quantum Borel kinematics ($H, \mathbf{E}, \mathbf{P}$) on Q is called differential if there exists a differential structure $D=(\tau, a)$ on the point set $Q \times \mathbb{C}$, where τ is a Hausdorff topology for $Q \times \mathbb{C}$ and a is a maximal C^{∞}-altas of charts compatible with τ, such that $L_{D}=$ $\left((Q \times \mathbb{C}, D), p r_{1}, Q, \mathbb{C}\right)$ is a complex line bundle over Q with hermitian metric \langle,\rangle_{0}, $\mathcal{L}(Q \times \mathbb{C}, \tau)=\mathcal{L}(Q) \otimes \mathcal{L}(\mathbb{C})$ and the domain v^{∞} equals to the complex vector space $\Gamma_{0}^{\infty}\left(L_{D}\right)$ of compactly supported differential sections of L_{D} which is dense in $L^{2}\left(L_{0}, \gamma\right)$ [1, Theorem 4].

Theorem 2.1. Let Q be a differential manifold and γ be a fixed smooth Borel measure on Q :
(1) For every pair (L, r) consisting of a complex line bundle over Q with the hermitian metric (,) and hermitian linear connection ∇ with vanishing curvature, and a real number r,

$$
\begin{gathered}
H_{L}=L^{2}(L,\langle,\rangle, \gamma), \quad \mathbf{E}(B) \psi=\xi_{B} \psi \quad \text { for } B \in \mathcal{L}(Q), \\
\mathbf{P}(X) \left\lvert\, \Gamma_{0}^{\infty}(L)=-\mathrm{i} h \nabla X-\left(\frac{1}{2} i+r\right) h d i v_{\gamma} X \quad \forall X \in \mathcal{X}_{c}(Q)\right.
\end{gathered}
$$

define a differential quantum Borel kinematics ($H, \mathbf{E}, \mathbf{P}$) on Q.
(2) Every differential quantum Borel kinematics on Q is equivalent to one given by (1).
(3) Two differential quantum Borel kinematics $\left(H_{j}, \mathbf{E}_{j}, \mathbf{P}_{j}\right)$ in (1) characterized by $\left(L_{j}, r_{j}\right)$, $j=1,2$, are equivalent if and only if $r_{1}=r_{2}$ and if there is an isometric isomorphism of L_{1} onto L_{2}, which transforms the connections into each other. Therefore, the set of equivalence classes of differential quantum Borel kinematics on Q can be mapped bijectively onto $\pi_{1}(Q)^{*} \times \mathbb{R}$ where $\pi_{1}(Q)$ denotes the fundamental group of Q and $\pi_{1}(Q)^{*}$ its group of characters.

Remark.

(1) The property of flatness of ∇ in Theorem 2.1 derives from

$$
[\mathbf{P}(X), \mathbf{P}(Y)]=-\mathrm{i} h \mathbf{P}([X, Y])
$$

for all $X, Y \in \mathcal{X}_{c}(Q)$ whenever $[X, Y] \in \mathcal{X}_{c}(Q)$.
(2) There are similar results for quantum Borel r-kinematics $(r>1)$ of type 0 [2].

For the proof, see Theorems 6 and 7 in [1].
We note that a differential quantum Borel kinematics ($H, \mathbf{E}, \mathbf{P}$) given by (L, r) in Theorem 2.1 automatically induces maps:

$$
Q: C^{\infty}(Q, \mathbb{R}) \rightarrow \operatorname{End}(H) \quad \text { and } \quad \mathbf{P}: \mathcal{X}(Q) \rightarrow \operatorname{End}(H)
$$

such that

$$
Q(f) \psi=f \psi, \quad \mathbf{P}(X) \psi=\left(-\mathrm{i} h \nabla X-\left(\frac{1}{2} \mathrm{i}+r\right) h d i v_{\gamma} X\right) \psi
$$

for $f \in C^{\infty}(Q, \mathbb{R}), X \in \mathcal{X}(Q), \psi \in v^{\infty}=\Gamma_{0}^{\infty}(L)$, where the set $E n d(H)$ of operators of the Hilbert space H is a Lie algebra with the bracket [, $]_{h}$:

$$
[A, B]_{h}=\mathrm{i} h^{-1}(A B-B A), \quad A, B \in \operatorname{End}(H)
$$

and $\mathcal{X}(Q)$ is the set of vector fields on Q. Meanwhile, let

$$
g_{k}=C^{\infty}(Q, \mathbb{R}) \oplus \mathcal{X}(Q)
$$

Define [,] : $g_{k} \times g_{k} \rightarrow g_{k}$ as follows:

$$
[X+f, Y+g]=[X, Y]+(X g-Y f) \quad \forall X, Y \in \mathcal{X}(Q), \quad f, g \in C^{\infty}(Q, \mathbb{R})
$$

then g_{k} is a Lie algebra. According to [1], the differential quantum Borel kinematics given by (L, r) induces a Lie homomorphism from g_{k} into $E n d(H)$, denote it by $\pi_{(L, i / 2+r)}^{k}$. In fact, replacing $\frac{1}{2} \mathrm{i}+r$ by any $c \in \mathbb{C}$ in the formulas of \mathbf{P}, we also get a Lie homomorphism. Denote it by $\pi_{(L, c)}^{k}$.

Definition 2.2. A h-representation of a Lie algebra g is a pair (H, π), where H is a Hilbert space and

$$
\pi: g \rightarrow \operatorname{End}(H)
$$

is a Lie homomorphism. Two h-representations $\left(H_{j}, \pi_{j}\right), j=1,2$, of g are called equivalent if there exists a unitary isomorphism $\phi: H_{1} \rightarrow H_{2}$ such that $\pi_{1}(X) \phi=\phi \pi_{2}(X)$ for all $X \in g$.

Theorem 2.2. For any $c \in \mathbb{C}$ and any complex line bundle L with the hermitian metric (,) and the hermitian linear connection ∇ with vanishing curvature,

$$
\pi_{(L, c)}^{k}: g_{k} \rightarrow \operatorname{End}\left(H_{L}\right)
$$

is a h-representations of g_{k}, where

$$
\pi_{(L . c)}^{k}(f+X) \psi=\left(-i h \nabla X-\operatorname{chdi} v_{\gamma} X+f\right) \psi
$$

for $f \in C^{\infty}(Q, \mathbb{R}), X \in \mathcal{X}(Q), \psi \in v^{\infty}=\Gamma_{0}^{\infty}(L)$. In particular, all the differential quantum Borel Kinematics $\pi_{(L, i / 2+r)}^{k}$ on Q are h-representations of g_{k}.

3. Geometric quantizations of $T^{*} Q$

Let $M=T^{*} Q$ be the cotangent bundle of a smooth manifold Q. Then $\omega=\mathrm{d} \theta$ is a symplectic form on $T^{*} Q$, where $\theta=p_{a} \mathrm{~d} q^{a}$ is the canonical one-form, the q 's are local coordinates on Q, and the p 's are the corresponding components of covectors. A Poisson bracket is defined in $C^{\infty}(M, \mathbb{R})$:

$$
\{F, G\}=\sum_{a}\left(\frac{\partial F}{\partial p_{a}} \frac{\partial G}{\partial q^{a}}-\frac{\partial F}{\partial q^{a}} \frac{\partial G}{\partial p_{a}}\right), \quad F, G \in C^{\infty}(M, \mathbb{R})
$$

Following Dirac, a prequantization is a linear mapping $F \rightarrow \check{F}$ of the Poisson algebra $C^{\infty}(M, \mathbb{R})$ into $S A(H)$ for some Hilbert space H, having the properties:
(1) $\check{1}=1$;
(2) $\left[F_{1}, F_{2}\right]=\left[\check{F}_{1}, \check{F}_{2}\right]_{h}$.

Theorem 3.1 (Kostant [5]). For every complex line bundle B over M with a hermitian metric and a hermitian linear connection with the curvature $h^{-1} \omega, H=$ closure of $\Gamma_{0}^{\infty}(B)$ and $\check{F}=-\mathrm{i} h \nabla x_{F}+F$ define a prequantization, here X_{F} is the Hamilton vector field of F. Two prequantizations given by $B_{j}, j=1,2$, are equivalent (i.e. equivalent as h-representations of the Lie algebra $C^{\infty}(M, \mathbb{R})$) if and only if there is an isometric isomorphism of B_{1} onto B_{2}, which transforms the connections into each other. So the set of equivalence classes of presentations of $M=T^{*} Q$ can be parametrized by $\pi_{1}(M)^{*} \cong \pi_{1}(Q)^{*}$.

Now we choose the vertical polarization P of $M=T^{*} Q: P_{m}=T_{m}\left(T_{p r(m)}^{*} Q\right), m \in M$, where $p r: M \rightarrow Q$ is the natural projective map of bundle $T^{*} Q$ on Q. Then $Q=M / P$. For simplicity, assume that Q is oriented.

Denote by $\Delta_{Q} \rightarrow Q$ the line bundle $\Lambda_{\mathbb{C}}^{n}(Q)$, where $n=\operatorname{dim} Q, \Omega_{\mathbb{C}}^{p}(M)$ the space of complex p-forms on M, and

$$
V_{P}(M)=\left\{X \in \mathcal{X}(M) \mid X_{m} \in P_{m}, m \in M\right\} .
$$

Then for $\beta \in \Omega_{\mathbb{C}}^{n}(M), \beta$ is the pull-back of a section of Δ_{Q} iff $X \vdash \beta=0$ and $X \vdash \mathrm{~d} \beta=0$ for all $X \in V_{P}(M)$, and the Lie derivative $L_{Z} \beta$ is also the pull-back of a section of Δ_{Q} if $Z \in \mathcal{X}(M)$ whose flow preserves P, where \vdash denotes the contraction of X with β.

Let $K_{P} \subset \Lambda_{\mathbb{C}}^{n}(M)$ be the canonical line bundle whose fibre at $m \in M$ is the onedimensional subspace of $\Lambda^{n} T_{m, \mathbb{C}}^{*} M$ of forms α such that $X \vdash \alpha=0$ for every $X \in P_{m}$. It is obvious that $K_{P}=p r^{*} \Delta_{Q}$. Since Q is oriented, the transition functions of Δ_{Q} and K_{P} can all be made real and positive. So we can take their square roots $\sqrt{\Delta_{Q}}$ and $\sqrt{K_{P}}$ by taking the square roots of the transition functions.

The covariant derivative ∇_{X} on K_{P} is defined for $X \in V_{P}(M)$ by $\nabla_{X} \beta=X \vdash \mathrm{~d} \beta$. The sections of K_{P} which are covariantly constant along P are the pull-backs of n-forms on Q. If Z is a vector field on M whose flow preserves P, then the Lie derivative L_{Z} maps
sections of K_{P} to sections of K_{P}. The ∇_{X} and L_{Z} can pass to the bundle $\delta_{P}=\sqrt{K_{P}}$ where they are determined by

$$
2\left(\nabla_{X} \tau\right) \tau=\nabla_{X} \tau^{2}, \quad 2\left(L_{Z} \tau\right) \tau=L_{Z} \tau^{2}
$$

Here τ is a section of δ_{P}.
Let B be a prequantum bundle, that is, a complex line bundle over M with a hermitian metric (,) and a hermitian linear connection ∇ with the curvature $h^{-1} \omega$. Set $B_{P}=B \otimes \delta_{P}$. Define

$$
V_{B}=\left\{\tilde{s}=s \tau \in \Gamma^{\infty}\left(B_{P}\right) \mid \nabla x \tilde{s}=(\nabla X s) \tau+s \nabla x \tau=0\right\} .
$$

If $\tilde{s}=s \tau$ and $\tilde{s}^{\prime}=s^{\prime} \tau^{\prime} \in V_{B}$, then $\left\langle\tilde{s}, \tilde{s}^{\prime}\right\rangle=\left\langle s, s^{\prime}\right\rangle \tau \tau^{\prime} \in \Gamma^{\infty}\left(K_{P}\right)$ and for $X \in V_{P}(M)$,

$$
\nabla x\left\langle\tilde{s}, \tilde{s}^{\prime}\right\rangle=\left\langle\nabla x \tilde{s}, \tilde{s}^{\prime}\right\rangle+\left\langle\tilde{s}, \nabla x^{\tilde{s}^{\prime}}\right\rangle=0 .
$$

Hence we can identify $\left\langle\tilde{s}, \tilde{s}^{\prime}\right\rangle$ with an n-form on Q and define an inner product on V_{B} by

$$
\left(\tilde{s}, \tilde{s}^{\prime}\right)=\int_{Q}\left\langle\tilde{s}, \tilde{s}^{\prime}\right\rangle
$$

The completion of $\left\{\tilde{s} \in V_{B} \mid(\tilde{s}, \tilde{s})<\infty\right\}$ is a Hilbert space H_{B}.
Let $\left\{q^{a}\right\}$ be local coordinates on Q, and $\left\{p_{a}\right\}$ the corresponding components of covectors, then a classical observable that generates a flow preserving P is locally of the form

$$
F(q, p)=v^{a}(q) p_{a}+u(q)
$$

where v 's and u are smooth real-valued functions of q 's. It is easy to see that

$$
g_{P}=\left\{F \in C^{\infty}(M, \mathbb{R}) \mid \text { whose flow preserving } P\right\}
$$

is a Lie subalgebra of the Poisson algebra $C^{\infty}(M, \mathbb{R})$. For $F \in g_{P}$, the possible choice of the corresponding quantum observable is the operator \hat{F} that acts on V_{B} by

$$
\hat{F} \tilde{s}=\check{F}(s) \tau+c s L_{X_{F}} \tau,
$$

where $\tilde{s}=s \tau \in V_{B}, c \in \mathbb{C}$. It is easy to check that \hat{F} is well-defined iff $c=-\mathbf{i} h$. So

$$
\hat{F} \tilde{s}=\check{F}(s) \tau-\mathrm{i} h s L_{X_{F}} \tau
$$

where $\tilde{s}=s \tau \in V_{B}$.
Theorem 3.2. [2] The Hilbert space H_{B} and the mapping $F \rightarrow \hat{F}, F \in g_{P}$, define a geometric quantization of M which is a h-representation of the Lie algebra g_{P}.

4. Quantum kinematics and geometric quantization

Now suppose Q, Δ_{Q}, B as above. Since Q is oriented, $\sqrt{\Delta_{Q}}$ is trivial. Fix a non-vanishing section τ^{\prime} of $\sqrt{\Delta_{Q}}$. Then $\gamma=\tau^{\prime 2}$ is a section of Δ_{Q} which can be considered as a Borel measure on Q. Set $\tau=p r^{*} \tau^{\prime} \in \Gamma\left(\delta_{P}\right)$. We have $\nabla x \tau=0$ for every $X \in V_{P}(M)$, and

$$
V_{B}=\left\{\tilde{s}=s \tau \mid s \in \Gamma^{\infty}(B), \nabla x^{s}=0, X \in V_{P}(M)\right\} .
$$

For $F \in g_{P}$ and $c \in \mathbb{C}$, define

$$
\tilde{F}(s \tau)=\check{F}(s) \tau+c L_{X_{F}} \tau, \quad s \tau \in V_{B} .
$$

Theorem 4.1. $\pi_{(B, c)}^{g}: F \rightarrow \tilde{F}, F \in g_{P}$, defines a h-representation of g_{P}.
For the quantum objects g_{K} in quantum kinematics and g_{P} in geometric quantizations, we have the following conclusion.

Theorem 4.2. As Lie algebras, g_{K} is isomorphic to g_{P}.
Proof. For $f \in C^{\infty}(Q, \mathbb{R}), X \in \mathcal{X}(Q)$, define

$$
\phi(f+X)(q, \alpha)=f(q)+\alpha\left(X_{q}\right)
$$

where $q \in Q, \alpha \in T_{q}^{*} Q$. Then $\phi(f+X) \in g_{P}$. It is easy to check that $\phi: g_{K} \rightarrow g_{P}$ is a Lie isomorphism.

Let $B \rightarrow M$ be a complex line bundle with a hermitian metric 〈, 〉 and a hermitian linear connection ∇ with the curvature $h^{-1} \omega=h^{-1} \mathrm{~d} \theta$, where $\theta=p_{a} \mathrm{~d} q^{a}$ is the canonical one-form on $M=T^{*} Q$. Find a collection $\left\{\left(U_{j}, \tau_{j}\right)\right\}$ of local trivializations of B such that $\left\{U_{j}\right\}$ is a contractible open cover of $M, \tau_{j}: U_{j} \times \mathbb{C} \cong \pi^{-1}\left(U_{j}\right)$ and $\nabla X s_{j}=0$ for any $X \in V_{P}(M)$, where $s_{j}=\tau_{j}(\cdot, 1)$ is the unit section of $\left(U_{j}, \tau_{j}\right)$. Then there exist $c_{j k} \in C^{\infty}\left(U_{j} \cap U_{k}, \mathbb{C}\right)$, and $\theta_{j} \in \Omega\left(U_{j}\right)$ such that

$$
s_{k}=c_{j k} s_{j}, \quad \nabla s_{j}=-\mathrm{i} h^{-1} \theta_{j} s_{j}, \quad \theta_{k}-\theta_{j}=\mathrm{i} h^{-1}\left(\mathrm{~d} c_{j k} / c_{j k}\right)
$$

Since the curvature of ∇ is $h^{-1} \omega=h^{-1} \mathrm{~d} \theta, \theta_{j}=\theta+\mathrm{d} g_{j}$ for some $g_{j} \in C^{\infty}\left(U_{j}\right)$.
Now it is easy to see that $\left\{V_{j}=\operatorname{pr} U_{j}\right\}$ and $\left\{\mathrm{d}_{j k}=\operatorname{pr} c_{j k}\right\}$ determine a complex line bundle $L_{B} \rightarrow Q$ which is the restriction of B on Q and has the hermitian metric <, $\| Q$. Moreover, $\left\{\alpha_{j}=\theta_{j}\left|V_{j}=\mathrm{d} g_{j}\right| V_{j}\right\}$ determines a hermitian linear connection ∇ of L_{B} with the vanishing curvature. We can check that

$$
X g_{j}=0, \quad X c_{j k}=0 \quad \text { for any } X \in V_{P}(M)
$$

So $c_{j k}=p r^{*} \mathrm{~d}_{j k}$ and $\mathrm{d} g_{j}=p r^{*} \alpha_{j}$.
It is easy to prove the following result.
Theorem 4.3. $\tilde{\rho}: B \rightarrow L_{B}$ is a bijection between complex line bundles over M with a hermitian metric and a hermitian linear connection with the curvature $h^{-1} \omega=h^{-1} \mathrm{~d} \theta$ and complex line bundles over Q with a hermitian metric and a hermitian linear connection with the vanishing curvature. It induces a unitary isomorphism

$$
\rho: H_{B} \rightarrow L^{2}\left(L_{B}, v\right), \quad \rho(s \tau)=s \mid Q .
$$

Let $\phi: g_{K} \rightarrow g_{P}$ be the isomorphism in Theorem 4.2. Choose $F \in g_{P}$, that is, in the cannonical coordinate system on M,

$$
F(p, q)=v^{a}(q) p_{a}+u(q)
$$

such that $Y \in \mathcal{X}(Q)$ when we define $Y_{q}=v^{a}(q)\left(\partial / \partial q^{a}\right)$ for $q \in Q$, and $u \in C^{\infty}(Q)$, $F=\phi(Y)+\phi(u)$. The Hamilton vector field of F is

$$
X_{F}=Y-\left(\frac{\partial v^{a}}{\partial q^{b}} p_{a}+\frac{\partial u}{\partial q^{b}}\right) \frac{\partial}{\partial p_{b}}
$$

Let $B \rightarrow M$ be a complex line bundle with a hermitian metric (,) and a hermitian linear connection ∇ with the curvature $h^{-1} \omega=h^{-1} \mathrm{~d} \theta,\left(U_{0}, \tau_{0}\right)$ be a local trivialization of B such that $\nabla x s_{0}=0$ where s_{0} is the unit section of (U_{0}, τ_{0}) and $X \in V_{P}(M)$. We have $\nabla s_{0}=-\mathrm{i} h^{-1}(\theta+\mathrm{d} g) s_{0}$ for some $g \in C^{\infty}\left(U_{0}\right)$ and $X g=0$ for any $X \in V_{P}(M)$. Now choose $\tilde{s}=s \tau \in V_{B} \subset H_{B}$, then $s \mid U_{0}=f s_{0}$ for some $f \in C^{\infty}\left(U_{0}\right), X f=0 \forall X \in$ $V_{P}(M)$, and for $c \in \mathbb{C}$,

$$
\begin{aligned}
\pi_{(B, c)}^{g}(F) \tilde{s} & =\check{F}(s) \tau+\frac{1}{2} \operatorname{chs} L_{X_{F}} \tau \\
& =\left(-\mathrm{i} h \nabla X_{F} s+F s\right) \tau+\frac{1}{2} \operatorname{chs} L_{X_{F}} \tau \\
& =\left[-\mathrm{i} h\left(X_{F} f-\mathrm{i} h^{-1} \theta\left(X_{F}\right)-\mathrm{i} h^{-1} X_{F} g\right) s_{0}+F f s_{0}\right] \tau+\frac{1}{2} \operatorname{chs} L_{X_{F}} \tau \\
& =\left[-\mathrm{i} h\left(Y f-\mathrm{i} h^{-1} \mathrm{~d} g(Y)\right) s_{0}+u f s_{0}\right] \tau+\frac{1}{2} \operatorname{chs} L_{X_{F}} \tau \\
& =(-\mathrm{i} h \nabla Y s+u s) \tau+\frac{1}{2} \operatorname{chs} L_{Y} \tau .
\end{aligned}
$$

Since $L_{Y} \tau^{\prime}=\frac{1}{2}\left(d i v_{\gamma} Y\right) \tau^{\prime}$, we get

$$
\begin{aligned}
\rho\left(\pi_{(B, c)}^{g}(\phi(Y+u)) \tilde{s}\right) & =-\mathrm{i} h \nabla_{Y} s|Q+u s| Q+\operatorname{ch}\left(d i v_{\gamma} Y\right) s \mid Q \\
& =\pi_{\left(L_{B}, c\right)}^{k}(Y+u) \rho \tilde{s}
\end{aligned}
$$

We have proved the following.
Theorem 4.4. As h-representations of $g_{k}\left(\right.$ or $\left.g_{P}\right)$,

$$
\pi_{(B, c)}^{g} \cong \pi_{\left(L_{B}, c\right)}^{k}
$$

In particular, quantum kinematics $\pi_{\left(L_{B}, r+i / 2\right)}^{k}$ is isomorphic to geometric quantization $\pi_{(B, r+i / 2)}^{k}$ for $r \in \mathbb{R}$.

Remark. Quantum Borel r-kinematics of type 0 can be obtained from corresponding geometric quantizations where the prequantum bundles are hermitian vector bundles with fibres diffeomorphic to \mathbb{C}^{r}.

Acknowledgements

The author would like to thank professor Min Qian and Maozheng Guo for introducing him into the field of geometric quantization, and Dr. Zhengdong Wang who first suggested
the necessity for clarifying the relation between quantum kinematics and geometric quantization.

References

[1] B. Angermann, H.D. Doebner and J.Tolar, Quantum Kinematics on Smooth Manifolds, Lecture Notes in Mathematics, Vol. 1037 (Springer, Berlin, 1983) pp. 171-208.
[2] J. Tolar, Borel Quantization and the Origin of Topological Effects in Quantum Mechanics, Lecture Notes in Physics, Vol. 379 (Springer, Berlin, 1991) pp. 179-190.
[3] I.E. Segal, Quantization of nonlinear systems, J. Math. Phys. 1 (1960) 468-488.
[4] P. S̃tovc̃ek, Diploma Thesis Technical University, Prague (1981) (in Czech).
[5] A.A. Kirillov, Geometric quantization, Dynamical System 4 (1992) 137-172.
[6] N. Woodhouse, Geometric Quantization (Clarendon Press, Oxford, 1992).

[^0]: * Supported by China Postdoctor's Foundation and National Natural Science Foundation of China.

